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An investigation is made of an e$cient matrix perturbation technique for
structural dynamic modi"cation in this paper. This paper is developed by
performing a subspace condensation and an orthogonal decomposition procedure
to obtain lower order perturbed eigensolutions. The matrix singular value
decomposition approach is then employed to compute the higher order
perturbations of eigensolutions. This method, with higher accuracy and simpler
procedure, is universally applicable to all three cases of eigenvalues in the
unperturbed system: distinct, repeated and closely spaced eigenvalues. Results of
the application of the method to examples are shown and compared with
numerical results to demonstrate the validity of the technique.
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1. INTRODUCTION

The dynamic behavior of many physical systems is completely determined by
obtaining the eigensolutions of an eigenvalue problem. Eigensolution calculation
for any but the smallest systems is an expensive and time-consuming process, which
means that the calculation is a major contributor to the computational expense of
structural dynamic analysis. This is especially so when an iterative design or
reanalysis process is performed until a satisfactory design is achieved. Therefore,
a quick and e$cient, even if approximate, evaluation of changes in eigensolutions
as a result of variations in parameters of modi"ed system is very valuable [1]. The
matrix perturbation technique (MPT) is just one of the most powerful tools,
through which the results of eigensolutions in the modi"ed systems can be obtained
directly from the results of the original/unperturbed systems without having to
repeat an entire analysis if the design changes are small. Thus substantial cost and
time savings can be realized.
0022-460X/99/470265#10 $30.00/0 ( 1999 Academic Press



266 J. K. LIU AND H. C. CHAN
Since the earlier study by Rayleigh on structural parameter modi"cation [2],
many investigations have been sparked of the MPT. Caughey applied the MPT to
the design of subsystems in large structures [3] and dynamic problems [4].
Romstad et al. investigated the general perturbation formulations employing
a power-series approach [5]. Chen and Wada, and Chen and Garbe proposed
analysis-test correlation criteria for structural dynamic systems [6] and analytical
model improvement [7] using the MPT. Chen and Wada developed an MPT for
structural dynamic analysis [8]. Stetson Meirovitch and Ryland put forward
MPTs for holographic vibration analysis [9] and gyroscopic systems [10]. Jones
studied the e!ect of small changes in mass and sti!ness on the natural frequencies
[11]. Rizai and Bernard analyzed the dynamic e!ects of redesign [12]. Baldwin and
Hutton presented a review on perturbation analysis and studied the natural modes
of modi"ed structures [13]. Wang discussed the eigenvalue reanalysis of locally
modi"ed structures [14]. Hu developed a MPT for the analysis of systems with
repeated eigenvalues [15]. For the case of closely spaced (nearly equal) eigenvalues,
Hu "rst proposed an MPT starting from subspace eigensolutions [15], and more
recently Chen et al. further discussed the same topic [16]. Chen, Liu and Zhao
presented an improved MPT by implementing the concept of subspace [17]. Such
an improved method possesses the ability to deal with the systems with distinct,
repeated, and closely spaced eigenvalues, and so can be regarded as a universal
method. In these studies, the modal expansion method is used to obtain the
perturbations of eigensolutions.

In structural vibration analysis, the modal expansion method is extremely
e$cient [18]. However, for many systems, especially for large complicated
structures, quite frequently it is di$cult to obtain all the modes (eigenvectors), and
so the truncated modal method should be employed [18, 19]. This, under some
circumstances, inevitably leads to signi"cant errors. To avoid this drawback, in the
present paper, an e$cient MPT is presented by using matrix singular value
decomposition (SVD) [20]. Such a treatment improves the accuracy of calculation
and e$ciency of analysis without having to use the complete modal expansion. The
proposed procedure is another universal MPT in analogy to that developed by
Chen et al. [17], in which the complete expansion of eigenvectors is utilized and
hence it will necessarily fail if only some of the eigenvectors are available. That is to
say, the present method not only can give adequately accurate perturbed
eigensolutions for all the three cases of eigenvalues, but also imposes no restrictions
on the number of available eigenvectors. An example is presented to verify the
validity of the proposed MPT. The results calculated by this method are extremely
close to the numerical results obtained by the QR method [18].

2. LOWER ORDER PERTURBATIONS OF EIGENSOLUTIONS

The original/unperturbed eigenvalue problem and corresponding normalization
condition are expressed by
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where K
0

and M
0

are n]n real-symmetric sti!ness and mass matrices respectively;
j
i0

, x
i0

are the ith eigenvalue and the associated eigenvector, and

d
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"1 if i"j, d

ij
"0 if iOj (1c)

is the Kronecker delta.
Without loss of generality, assume that the n eigenvalues satisfy
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which means the unperturbed system possesses k!j#1 repeated or closely spaced
eigenvalues.

In structural dynamic modi"cation, the design changes in a structural system
may be re#ected by the variations in K

0
and M

0
. Regardless of the reasons, the net

e!ect is that the matrices K
0

and M
0

are di!erent from the original ones. Since
these changes are usually small compared to the entire system, the two updated
matrices relative to that in equation (1a) can be expressed as
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in which K
1

and M
1

are the n]n real-symmetric matrices representing the
corresponding changes of K

0
and M

0
respectively, and both are small relative to

K
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and M
0
. Therefore, K
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and M
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are "rst order perturbed matrices. As the design

changes approach zero, K
1
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1
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0
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By analogy with equations (1a) and (1b), considering equations (2a) and (2b), the
perturbed eigenvalue problem and the associated normalization condition can be
written as
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where j
i
and x

i
are the ith eigenvalue and eigenvector of the perturbed system

respectively.
First, we choose several eigenvectors to span an eigensubspace U. For practical

use, the eigenvectors corresponding to those repeated or closely spaced eigenvalues
are usually chosen for the analysis [15, 17], i.e.,

U"[x
j0

,2, x
k0

]. (4)

Generally speaking, the variation of an eigenvector may be signi"cant, but the
angle between the unperturbed and perturbed eigensubspaces can be regarded as
small. This is discussed in Hu's book [15]. Therefore, an orthogonal decomposition
of the perturbed eigenvector, say, x

i
, with respect to the unperturbed eigensubspace
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can be made as
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where q
i
is a k!j#1-dimensional column vector and dx

i
is a "rst order k!j#1

column vector. Both are to be determined.
The variational principle corresponding to the perturbed system (3a) is
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where the symbol &st'' means &&stationary value''.
Neglecting small quantities of second order and using equation (5b), equation (6)

reduces to
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where k
i
is an approximation to j

i
, precise to the "rst order.

Transforming equation (7) into an algebraic equation results in
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Inserting equation (5a) into equation (3b), using equation (5b), and neglecting
second order quantities, we obtain

qT
i
MM q

i
"1, i"j&k (9)

Equations (8) and (9) comprise an eigenvalue problem of the reduced system, from
which the k!j#1 eigensolutions k

i
and q

i
, and hence the lower order

perturbations of the eigensolutions j
i
and x

i
, can be quickly determined because of

k!j#1@n in general.
The obtained mathematical procedure may be summed up in the following

statement, i.e., to "nd the approximate solution for the perturbed system by the Ritz
method in the subspace spanned by the eigenvectors corresponding to the repeated
or closely spaced eigenvalues of the unperturbed system. Since there is only a small
angle between the unperturbed and the corresponding perturbed subspaces [15],
Uq

i
has an error of the "rst order and hence k

i
has only an error of the second order

according to the Rayleigh's quotient theorem.

3. HIGHER ORDER PERTURBATIONS OF EIGENSOLUTIONS

In some cases, the accuracy of the lower order perturbations obtained in section
2 may be acceptable. However, quite often such accuracy may be unacceptable, and
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thus higher order perturbations are required. To this end, the perturbed
eigensolutions are expressed as
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(10a, b)

where j
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, j
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are the second and third order perturbations of j
i
respectively; x
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, x
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and x
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are the "rst, second and third order perturbations of x

i
respectively.

Comparing equation (10b) with equation (5a) yields
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Substituting equations (10a) and (5a) into equation (3a), we have
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Premultiplying equation (12) by (Uq
i
)T, collecting terms of the same order, and

using equations (5b), (8) and (11), we have
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By inserting equation (1b) into equations (13a) and (13b), we obtain the second and
third perturbations of eigenvalues
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respectively. However, they have not been completely determined because x
i1

, x
i2

remain unknown.
Substituting equation (11) into equation (12), and ignoring fourth order terms, we

obtain
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Introducing equation (10b) into equation (3b) yields
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Expanding equation (16) and using equation (9), we obtain
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Up till now, we have obtained all the necessary fundamental equations governing
the determination of higher order perturbations, i.e., j
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then j
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in equations (14a) and (14b) cannot be determined by the classical

solution procedure of linear algebraic equations. On the other hand, the
perturbations of eigensolutions have to satisfy equations (17a), (17b) and (17c). Here
again, x
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and then j
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cannot be determined by the classical solution

procedure because the number of equations (15a) and (17a), (15b) and (17b), or (15b)
and (17b) is greater than that of the unknowns. To overcome the di$culty, now the
matrix SVD technique is used to solve the equations.

Combining equations (15a) and (17a) yields
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Simply speaking, for a given m]n real matrix A, there exist orthogonal matrices
; and <, such that

A";=<T, (20a)
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are the non-negative square roots of n eigenvalues of symmetric matrix ATA. This is
the so-called SVD of a real matrix.

Assume that A";=<T is available, the least-squares solutions of the set of
linear algebraic equations, i.e., equation (18), are
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where superscript &&#'' denotes the generalized inverse, and
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Therefore, we have obtained x
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and hence j
i2

be recalling equation (14a).
Similarly, by combining equations (15b) and (17b), we have
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Using the same pattern, we have
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The perturbations of eigensolutions of the fourth order or higher, albeit of little
practical value, can also be found by the same procedure, provided that fourth
order terms in the associated expansions are retained.

For the case of distinct eigenvalues, i.e., when iOj&k, the perturbations of
eigensolutions can be found by the classical MPT. In fact, however, the proposed
method is completely applicable to such case. At this moment, we only need to
choose U"x

i0
(lOj&k).

From the above derivations and formulas, it can be seen that: "rstly, for the
higher order perturbations of eigenvectors, the complete modal expansion has not
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been use. This treatment is especially useful and e!ective when only some (usually
the lower order) of the unperturbed eigenvectors have been obtained. Secondly, the
SVD is expensive in general. However, the matrix A to be decomposed in equation
(18) is the same in the "rst, second, and third order perturbation formulas of
eigenvectors; see equations (21), (24), and (25). That is to say, the SVD of the matrix
is required only one time for all order perturbations. Thirdly, since k!j#1 is
generally much less than n (the number of degree of freedom of a system), the
proposed technique is less expensive. Finally, the present method is applicable to all
the three cases: distinct, repeated, and closely spaced eigenvalues. These, if not
more, are the main reasons why this paper has been presented.

4. AN EXAMPLE

Consider a six-degree-of-freedom system

K
0
"

1 0 0 0 0 0

0 1)05 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2)06 0

0 0 0 0 0 5

, K
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0)05 0 0)05 0 0 0

0 0)05 0 0 0 0

0 0 0 0 0)05 0

0 0 0 0)05 0 0)05

0 0 0 0 0)05 0

M
0
"I, M

1
"0,

in which I denotes the identity matrix.
The six groups of eigensolutions of the unperturbed system are listed in Table 1.

It can be seen that there are three cases of eigenvalues, i.e., distinct, repeated and
closely spaced eigenvalues.

By using the present method, the eigensolutions of the perturbed system can be
easily obtained, which are listed in Table 2, and the exact numerical solutions
computed by QR method are also listed in Table 2 for comparison.
TABLE 1

Six groups of eigensolutions of the unperturbed system

j
i0

(i"1}6) xT
i0

(i"1}6)

1 (1, 0, 0, 0, 0, 0)
1)05 (0, 1, 0, 0, 0, 0)
2 (0, 0, 1, 0, 0, 0)
2 (0, 0, 0, 1, 0, 0)
2)06 (0, 0, 0, 0, 1, 0)
5 (0, 0, 0, 0, 0, 1)



TABLE 2
Six groups of eigensolutions of the perturbed system

j
i0

(i"1}6) xT
i0

(i"1}6)

QR method 0)968418 (0)84518, !0)53385, 0)02588, 0, 0, 0)
1)078951 (0)53447, 0)84394, !0)04581, 0, 0, 0)
1)971489 (0, 0, 0, 0)86867, !0)049533, 0.00818)
2)002631 (0)00262, 0)05255, 0)99861, 0, 0, 0)
2)087661 (0, 0, 0, 0)49540, 0)86854, !0)01491)
5)000850 (0, 0, 0, 0)00028, 0)01700, 0)99986)

Present method 0)969098 (0)85065, !0)52573, 0)02550, 0, 0, 0)
("rst order) 1)080902 (0)52573, 0)85065, !0)04628, 0, 0, 0)

1)971691 (0, 0, 0, 0)87020, !0)49270, 0)00813)
2 (0, 0)5263, 1, 0, 0, 0)
2)088310 (0, 0, 0, 0)49270, 0)87020, !0)01494)
5 (0, 0, 0, 0, 0)01701, 1)

Present method 0)968428 (0)84263, !0)53807, 0)0255, 0, 0, 0)
(second order) 1)078933 (0)53951, 0)84086, !0)04628, 0, 0, 0)

1)971490 (0, 0, 0, 0)86805, !0)49642, 0)00813)
2)002631 (0)00263, 0)05263, 0.99861, 0, 0, 0)
2)087659 (0, 0, 0, 0)49656, 0)86788, !0)01494)
5)000850 (0, 0, 0, 0)00028, 0)01701, 0)99986)
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5. CONCLUDING REMARKS

From the above results as shown in Tables 2, it can be observed that, in all the
three cases of distinct, repeated and closely spaced eigenvalues, the "rst order
perturbed eigensolutions obtained by the proposed MPT have su$cient precision
compare with the numerical solutions calculated by QR method. Furthermore, the
second order approximations are nearly equal to the QR solutions, and thus the
validity and universality of the method are completely veri"ed.

Besides universality, validity and higher accuracy, the other attribute of the
method is its simplicity in the derivation of the working procedure. These
advantages mainly lie in two operations: taking the projection of a vector onto
a subspace and performing the SVD, both being the most elegant and stable
algorithms in numerical algebra. On the other hand, the method is especially
e!ective if only some of the unperturbed eigensolutions are known or only several
eigensolutions are of concern, because the complete modal expansion has not been
used in the higher order perturbations.
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